
The Bug That Cried Wolf
Edward Chen
UC San Diego

Arvind Saripalli
UC San Diego

Shun-Wen Yu
UC San Diego

Abstract
With the prevalent use of static analysis checkers and the rise of
new tools of this kind comes a necessity to ensure the effective-
ness and reliability of these tools. In order to accomplish this task,
we developed a framework, Breezy, which allows automated bug
tracking from the inception to the resolution of a bug within any
given Github repository. Our current tool utilizes Clang, Cppcheck,
and Infer, 3 commonly used static analysis tools deployed in in-
dustry, but can easily be extended to incorporate any additional
checkers. For our experiments, we analyzed a few small scale C++
based repositories and the Mozilla Gecko-Dev repository. Our anal-
ysis indicates we are able to successfully track a bug’s lifespan,
depending on the effectiveness of the static analysis tool. We also
conducted analysis on the effectiveness of static analysis tools by
comparing results of those tools against fixed bugs documented on
Firefox’s bug tracking platform, Bugzilla. For future endeavors, we
plan on performing large scale data analysis on reported bugs and
implement a ranking system to determine the false positive rate of
a flagged bug.

Keywords static analysis, bug finding, bug tracking, bug ranking

1 Introduction
Vulnerabilities within a piece of software are often times hard to
find and costly if not fixed promptly. Thus many static analysis tools
have been created in order to make finding bugs easier. However,
many of these static analysis tools suffer from having a high false
positivity rate, reducing the urgency for developers to fix flagged
bugs. In this paper, we present a framework, Breezy, for tracking a
bug’s lifespan from the inception to the resolution of a bug. Breezy
applies static analysis tools on previous commits within a Github
repository, saving any updates to previous or new bugs found. The
data can be later used to reveal possible bugs to newly introduced
code, or even decide how likely a bug is actually a true positive.
This framework can eventually be extended to incorporate newly
created static analysis tools and or even be integrated into systems
that currently run static analysis tools.

2 Background Related Work
Static analysis tools are a commonly distributed bug detecting
system that is widely used throughout both industry and academia.
To our knowledge, there exists no other system that currently
utilizes static analysis tools across Github repositories, specifically
through past commits, or compares the end results of multiple static
analysis tools.

Static Analysis Tools Background Static analysis tool research
is far from a new concept [7] [10]. Previous research within the bug
finding field indicates some promising results from utilizing our
framework. A review from Wagner et. al. showed that bugs found
through static analysis checkers may not necessarily be caught
through testing frameworks, but a subset of these bugs still appear

within bug reviews [13]. Therefore, bugs caught by tools may serve
to be true security vulnerabilities.

Lessons from Industry Static analysis tools are notorious for
having false positive rates when analyzing for bugs. Recent research
shows that when deploying these static analysis tools across large
scale systems at Google [4] [11] and Facebook [5], many of the
developers lose faith in these tools due to the high number of
probable but false bugs that these tools were detecting. Although
changing the workflow of these tools to be more on-demand than
overnight runs served some benefit in fixing more flagged bugs,
static analysis tools are still associated with having a high false
positive rate.

Reducing the number of False Positives Many approached have
been taken in reducing the number of false positives from the static
analysis tools. The primary approach is to utilize text and specifi-
cation mining in order to predict whether a flagged bug is a true
positive or not [9] [8]. These systems usually rely on the static
analysis bug reports as input data and can be incorporated on top
of existing static analysis detection systems.

Static Analysis Tools Used For this project, we chose to use Cp-
pcheck, Infer, and Clang. Cppcheck is a lightweight static analysis
tool focused solely on detecting bugs in C/C++ code. Cppcheck
uses unsound flow sensitive analysis, sacrificing the accuracy of the
checker in order to reduce the number of false positives. This tool
has an extremely low entry bar with its ability to run on uncom-
piled C/C++ repositories and has the quickest turn-around time
compared to Clang and Infer. [2] Infer is another static analysis tool
created and widely deployed across the systems at Facebook. This
static analysis tool focuses on code written in Java, C, C++, and
Objective-C. There are two implementations of this tool: 1. Infer.SL
which uses separation logic to detect bugs 2. Infer.AI which is a
more generalized version of Infer focusing on modular analysis.
For our project, we only tested the Infer.SL implementation of Infer,
but our framework can support both implementations[3]. The last
tool we used is Clang Static Analyzer (Clang), a commonly used
static analysis tool for C, C++, and Objective-C code. This static
analyzer "can detect dead code or memory leaks, but as a typical
side effect they have false positives" [1].

3 Breezy Framework
Breezy is a framework that we developed to track bugs over time in
repositories. Given a range of commits to analyze, it can determine
when bugs are created and when they become resolved, as well as
statistical trends for these bugs.

Breezy takes as input any repository as well as a specification for
a static analysis tool to use. Currently, Clang, Cppcheck, and Infer
are the static analysis checkers that are supported. Static analysis
tools can be configured, mixed and matched so that Breezy users
can analyze exactly the kinds of bugs that they are looking for in
their repositories. For example, Breezy can be configured to work
as a linter and analyze linting errors over time.



Figure 1. Breezy high level architecture

3.1 What is a bug?
We based our definition of a bug based on what we observed in the
output of some commonly used static bug checkers. A bug in our
system is defined by its

• file
• line(s) of code (LOC)
• buggy code
• type of bug
• description

We store some additional information about a bug such as the
commit that it was found in. Note that the same bug can be found
in multiple commits, so this is not a piece of information that can
be used to readily identify the bug.

Additionally, a bug can move around in a file if the file is mod-
ified. So, across commits, the same bug can have different LOCs.
Therefore when we hash bugs to distinguish them, we leave out
the LOC and commit information.

3.2 Bug Reports
The basis for finding bugs in our system is to run a static bug
checker on a window of commits of a specified repository. The
output of the checker is parsed into a list of bugs. We store this list
of bugs as a bug report data structure, a structured representation
of the bug information for a single commit. We step through each
commit in the window, and save the resulting bug report for each
commit in the window.

The saved bug reports are used down the line to analyze bug
trends over time in the given commit window.

3.3 Tracking bugs over time
3.3.1 Bug conception
As a base case, we treat all bugs in the starting commit of the
commit window as having been conceived in that commit.

Given commit 𝑛, commit 𝑛 + 1 immediately following it, and bug
reports for each commit, we would like to determine which bugs in
commit 𝑛 + 1 are new. To do this, we iterate through each changed
or added file between these commits. We check the bugs in these
files as shown in Figure 2.

When a new file is added, all of its bugs are new. If a file is
modified and it previously did not contain bugs, then all of its bugs
are new. In other cases, we obtain hashes for bugs in each commit.
Our hash is defined over all of the bugs attributes except for its

Figure 2. Determining which bugs were conceived in a commit

location and commit. This is because bugs can move around in
code and are persistent across commits, so those attributes do not
identify a bug. Once we have the hashes, all of the hashes in the
commit 𝑛 + 1 that are not in commit 𝑛 are considered to be new
bugs.

All of the new bugs found in commit 𝑛 + 1 are added to the pool
of bugs being tracked over time.

3.3.2 Tracking a single bug over time
Given a single bug, we use the following approach (3) to determine
when it is resolved in the commit window, if at all. From commit
to commit, if the file that the bug is contained in was modified,
then we examine the diff of the file. If the LOCs of the bug were
part of the modification to the file, then we cross examine the bug
reports from the commits to determine whether the modification
resolved the bug or not. If the LOCs of the bug were not part of
the modification, we use the diff to determine the new LOCs for
the bug. If the file was renamed, then the file in the bug is adjusted
accordingly.

3.3.3 Static Bug Checkers
Because our definition of a bug is a relatively simple abstraction,
Breezy can use many different static checkers and potentially in
combination with one another. In our own tests, we relied on Cp-
pcheck, Infer, and Clang.

Adding support for new static checkers is relatively simple. The
main code addition to support a new static checker is to write a
parser for the output of the static checker to our bug class.

4 Using Breezy
4.1 mozilla/gecko-dev
As part of the evaluation of our bug tracking tool, we ran our tool
on the Mozilla Firefox source code. The Mozilla Firefox source code

2

https://github.com/mozilla/gecko-dev


Figure 3.Determiningwhether a bug has been resolved in a commit

provides a large and highly bug-prone code base for us to perform
analysis upon. Furthermore, bugs are flagged and resolved daily in
a well-documented fashion through Bugzilla. Using information
from Bugzilla, we can compare the types and location of bugs
documented on Bugzilla against bugs we find using static checkers
such as Clang.

4.2 Bugzilla
The open source gecko-dev repository uses a platform called Bugzilla
to report, document, and review bugs as well as bug fixes. Bugs
documented on Bugzilla contain information such as: product in-
volved, component involved, resolution status, priority, severity,
and other information. Bug reports typically include attachments
that document steps to reproduce the bug, and/or relevant log files.
For fixed bugs, the attachments also include git diffs for the files
changed either through a text file or through a link to a code re-
view entry on Phabricator, which is a code review platform used
by gecko-dev.

4.3 Bugzilla statistics
We used Bugzilla to parse information about resolved bugs, which
was facilitated by interfacing with Bugzilla’s REST API. We looked
at all resolved bugs of major/critical severity within the past two
years, and parsed their attachments to obtain file changes associated
with each bug fix. Using this information, we plotted the top twenty
files changed with major/critical bug fixes in Figure 5 and the top
twenty top level directories involved in major/critical bug fixes
in Figure 4. Both plots show the disproportionate amount of bug
fixes involving the Javascript engine as well as the DOM (Document
Object Model). We think this is because of the complexity of these
files as well as the frequency of practical use in these respective
repositories.

4.4 Clang on gecko-dev
We ran Clang on gecko-dev across multiple commits to compare
Clang’s static analysis data against documented bug reports on
Bugzilla. By jumping at 100,000 commits at a time, we ran Clang on
each of those commits to find the number of bugs caught by Clang
at each point in time. This is plotted as a line graph in Figure 6.

Figure 4. The top 20 directories involved in resolved major/critical
bugs reported on Bugzilla

Figure 5. The top 20 files involved in resolved major/critical bugs
reported on Bugzilla

Figure 6. The number of gecko-dev bugs caught by Clang over
time

We find that, naturally, the number of bugs increases as the code
3

https://bugzilla.mozilla.org/home


Figure 7. gecko-dev file changes over time

base becomes larger, but we were unable to account for the sudden
leap from 396 bugs to 1260 in a little less than a two month period.
Initially, we thought this may have had to do with a sudden increase
in code changes during that period, but running git diffs across
the entire lifespan of the repository showed that the lines of code
change during that was not significant over that period. Our results
of running git diff across the repository’s lifespan can be seen in
Figure 7.

Figure 8. The frequency of bugs found in directories by Clang

4.5 Comparing clang output with Bugzilla
We used the clang reports over multiple commits to generate in-
formation about the number of bugs found in a given file (Figure
9) and the number of bugs found in a given directory (Figure 8)
over time. To avoid duplicating the count for an unfixed bug across
several commits, we hashed the (filename, description, code snippet,
bug type, and severity) of each bug and counted the hashes of these
bugs. However, this method only works as an approximation, as
there were instances in which the same buggy code was repeated

Figure 9. The frequency of bugs found in individual files by clang

in multiple locations within the same commit, and cases where a
bug persisted in a later commit after a minor code change.

Comparing buggy files and directories found by clang against
those documented on Bugzilla, we see a drastic difference. Clang
found many bugs in directories involving localization, media han-
dling, and third party software. Media handling involves a lot of
bit-level operations that are notoriously difficult to get right, and
third party software does not receive the same scrutiny as software
developed for Firefox. We hypothesize that this difference is also
accounted for by the fact that the bugs documented on Bugzilla
are more often logical bugs whereas the bugs caught by clang are
more low level memory-related bugs. Bugs clang caught involve
less critical code paths, making them more difficult to be discovered
through regular use.

Figure 10. The average number of commits to resolve each type
of bug

4



4.6 Using Breezy on Firefox with Clang
We ran Breezy on Firefox with Clang and for each bug that we found
to be resolved at a later commit, we documented the time it took for
each type of bug (as specified by Clang) to resolve. From this, we
found that bugs involving "Allocator sizeof operandmismatch" bugs
take, on average, the most commits to resolve. We speculate that
this is due to the fact that errors involving the sizeof operand are
typically harder to discover and often have no significant functional
consequence. Otherwise, we believe the average number of commits
it takes to resolve can serve as a indicator for the severity of a given
bug type. Bugs that take less commits to resolve could mean that
they are of more importance and bugs that take more commits to
resolve may mean that they are less significant.

Figure 11. The average number of commits to resolve each type
of bug in Microsoft Calculator

Figure 12. Plotting commit of inception against commits to resolve

4.7 Using Breezy on Microsoft Calculator with Cppcheck
To get a different perspective of Breezy by running on an entirely
different code base, we ran Breezy on Microsoft Calculator, a simple

C++ based calculator application with only about 400 commits. We
also ran this evaluation with Cppcheck instead of Clang. In Figure
11 we plotted out the average number of commits to resolve each
type of bug, and Figure 12 is a scatter plot that plots the commit
the bug was first found on the x-axis with the number of commits it
took to resolve on the y-axis. We found that due to the imprecision
of Cppcheck bug type parameter, we were unable to come up with
in depth analysis on these data points. However, we wish to use
these types of graphs to plot other repositories and static analysis
tools that we wish to use Breezy with in the future.

4.8 Deploying Breezy on Amazon EC2
To automate running static analysis tools across many instances of
a repository, We developed a CLI tool that allows us to create, start,
stop, and terminate AWS instances. A simple set-up bash script can
be utilized to clone in the repository and all required dependencies.
The output of the bug reports can likewise be copied back onto
local disk for further data analysis. We used the boto3 [12] library,
an Amazon library to manage EC2 instances, and Paramiko [6], a
library that can send commands over ssh, in order to complete this
CLI.

5 Future Work
5.1 Ranking Bugs
The original motivation for developing the Breezy framework was
to find a way to contextually rank the output of static bug checkers
by relevance. Static bug checkers are notorious for outputting false
positive bugs which makes it less likely for developers to make
decisions informed by the vanilla checkers. Some checkers have
bug severity as a rank, but those are often hard-coded and do not
change in context of the rest of the bugs that a checker outputs.

Breezy was proposed as a tool to generate training data for a
model that can rank the output of these checkers. The goal for such
a model is to try and predict the amount of time it takes for a given
bug to be resolved, in terms of commits. Because Breezy is able
to track several bugs in repositories, it also has information about
how long it takes for bugs to be resolved. As a result, a model can
be trained to take information about the bug such as its code or
description and output how long it might take for it to be resolved.

When this is done for many bugs, the bugs can be sorted by their
predicted resolve time which may potentially act as a source of
bug importance. Even if it is not a good predictor of importance, it
can easily filter out bugs that are never resolved by developers, in
effect making the ranker a binary filter of whether a bug should be
shown to a developer or not. We hope to use Breezy to train such
classifiers and potentially built developer tools to filter out ’bad
bugs’ to make static checkers more readily usable in production
environments.

5.2 Large Scale Bug Trends
Although our original goal was to use Breezy as an intermediate
step in bug ranking, we now see that it can be used as a much more
powerful analytics tool on top of production repositories. consider
a production repository that already employs the use of a static
bug checker as part of a CI/CD pipeline. Breezy can simply use the
output of these test runs to readily generate bug reports without
any additional cost. Over time, Breezy is generating bug reports for
each commit of the repository, and can readily generate analytics

5



and trends for the types of bugs that are appearing over time in the
repository.

As an example, consider a repository that is migrating from
one framework to another and is undergoing a large refactor as a
result. Breezy can determine if this is causing a higher than normal
influx of buggy code, can draw developers’ attention to areas of
their codebase where buggy code is manifesting, and hopefully
enable developers to prevent making even more serious buggy code
changes.

In this sense, Breezy can be used as a novel way of monitoring
the health of a production repository and giving developers both
fine and coarse grained analysis over the bugs that plague their
repositories.

6 Conclusion
We developed Breezy, a novel bug tracking framework that uses
existing static analysis tools and a user provided repository to track
the repository’s bugs over time. We ran Breezy on a couple of test
repositories, and the more heavy weight gecko-dev repository, and
gained insights into how bugs change over time in repositories. We
see Breezy as a stepping stone framework which can be used in a
number of ways downstream. Overall, Breezy shows us that looking
at bugs at a macro scale and over time can benefit developers greatly.

References
[1] [n.d.]. a C language family frontend for LLVM. ([n. d.]). http://clang.llvm.org/
[2] [n.d.]. Cppcheck. ([n. d.]). https://github.com/danmar/cppcheck
[3] [n.d.]. Infer. ([n. d.]). https://fbinfer.com/
[4] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles

Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A Few
Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.
Commun. ACM 53, 2 (Feb. 2010), 66–75. https://doi.org/10.1145/1646353.1646374

[5] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.
2019. Scaling Static Analyses at Facebook. Commun. ACM 62, 8 (July 2019),
62–70. https://doi.org/10.1145/3338112

[6] Jeff Forcier. 2003. paramiko. https://github.com/paramiko/paramiko
[7] S. Kim, T. Zimmermann, K. Pan, and E. J. Jr. Whitehead. 2006. Automatic Identi-

fication of Bug-Introducing Changes. In 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE’06). 81–90.

[8] Tim Menzies and Andrian Marcus. 2008. Automated Severity Assessment of
Software Defect Reports. IEEE International Conference on Software Maintenance,
ICSM, 346 – 355. https://doi.org/10.1109/ICSM.2008.4658083

[9] M. Pradel and T. R. Gross. 2012. Leveraging test generation and specification min-
ing for automated bug detection without false positives. In 2012 34th International
Conference on Software Engineering (ICSE). 288–298.

[10] N. Rutar, C. B. Almazan, and J. S. Foster. 2004. A comparison of bug finding tools
for Java. In 15th International Symposium on Software Reliability Engineering.
245–256.

[11] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera
Jaspan. 2018. Lessons from Building Static Analysis Tools at Google. Commun.
ACM 61, 4 (March 2018), 58–66. https://doi.org/10.1145/3188720

[12] Amazon Web Services. 2014. boto3. https://github.com/boto/boto3
[13] Stefan Wagner, Jan Jürjens, Claudia Koller, and Peter Trischberger. 2005. Com-

paring Bug Finding Tools with Reviews and Tests. In Testing of Communicating
Systems, Ferhat Khendek and Rachida Dssouli (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 40–55.

6

http:// clang.llvm.org/
https://github.com/danmar/cppcheck
https://fbinfer.com/
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/3338112
https://github.com/paramiko/paramiko
https://doi.org/10.1109/ICSM.2008.4658083
https://doi.org/10.1145/3188720
https://github.com/boto/boto3

	Abstract
	1 Introduction
	2 Background Related Work
	3 Breezy Framework
	3.1 What is a bug?
	3.2 Bug Reports
	3.3 Tracking bugs over time

	4 Using Breezy
	4.1 mozilla/gecko-dev
	4.2 Bugzilla
	4.3 Bugzilla statistics
	4.4 Clang on gecko-dev
	4.5 Comparing clang output with Bugzilla
	4.6 Using Breezy on Firefox with Clang
	4.7 Using Breezy on Microsoft Calculator with Cppcheck
	4.8 Deploying Breezy on Amazon EC2

	5 Future Work
	5.1 Ranking Bugs
	5.2 Large Scale Bug Trends

	6 Conclusion
	References

